LETTERS TO THE EDITOR

SYNTHESIS AND DEHYDROCYANATION OF N-SUBSTITUTED 11, 14-DICYANOPERHYDROACRIDINES

V. A. Kaminskii, L. N. Donchak, and M. N. Tilichenko Khimiya Geterotsiklicheskikh Soedinenii, Vol. 5, No. 6, p. 1134, 1969 UDC 547.835.1.2.07

Attempts to obtain N-substituted 11,14-dicyanoperhydroacridines by the reaction of RNH₂·HCl and KCN with 2,2'-methylenedicyclohexanone (I) in aqueous ethanol, by analogy with the synthesis of 11, 14-dihydroper-hydroacridine itself [1], have been unsuccessful. Under these conditions hydrocyanation takes place.

However, when the reaction is carried out in 60-80% acetic acid, cycloaminocyanation takes place readily with the participation of various amine components, including glycine.

The reaction obviously takes place via the original formation of N-substituted decahydroacridines which then readily add hydrocyanic acid:

The reaction is carried out by adding a solution of I in CH_3COOH slowly (in the case of IIc, dropwise) to a solution of RNH₂ and KCN in 50-70% CH_3COOH .

The structure of the compounds obtained was confirmed (in the case of IIa, IIc, and IId) by reductive dehydrocyanation, which took place when the dicyanides were boiled with 85% HCOOH and enabled them to be converted into the known N-methyl- and N-phenylper-hydroacridines [3] (after being boiled with HCOOH, IId was subjected to decarboxylation in glycerol at 200°C).

On dry distillation with an equimolar amount of CaO, IIc readily undergoes dehydrocyanation with the formation of N-phenyldecahydroacridine III [4]. The product obtained is extremely unstable and absorbs atmospheric oxygen. Under the action of KCN in CH₃COOH, it adds 2 moles of HCN, being reconverted into IIc.

REFERENCES

- 1. V. A. Kaminskii and M. N. Tilichenko, KhGS [Chemistry of Heterocyclic Compounds], 3, 708, 1967.
- M. N. Tilichenko and V. A. Kaminskii, ZhOKh, 34, 356, 1964.
- 3. V. I. Vysotskii, Abstracts of Papers at the XII-th Scientific Conference of DVGU [Far Eastern State University], Vladivostok [in Russian], 199, 1967.
- L. R. Freimiller and I. M. Nemec, US patent no. 3326917; C.
 A., 68, 49469c.

21 March 1969

Far Eastern State University, Vladivostok

Characteristics of the Compounds Obtained

Compound	R	Mp,°C	Empirical formula	Found, %			Calculated, %			1, %
				С	Н	N	С	Н	N	Yield,
IIa IIb IIc IId IIe III	CH ₃ CH ₂ CH ₂ OH C ₆ H ₅ CH ₂ COOH CH ₂ COOC ₂ H ₅ C ₆ H ₅ *	201—203 194—195 240—241 135—138 169—171	C ₁₆ H ₂₃ N ₃ C ₁₇ H ₂₅ N ₃ O C ₂₁ H ₂₅ N ₃ C ₁₇ H ₂₅ N ₃ O ₂ C ₁₉ H ₂₇ N ₃ O ₂ C ₁₉ H ₂₇ N ₃ O	74.68 71.01 79.70 67.90 69.42 85.98	8,90 8,85 8,13 7,91 8,42 9,13	16.40 14.96 13,22 14.10 12.49 5.59	74.71 71.08 79.00 67.77 69.28 86.04	8.91 8.71 7.88 7.66 8.26 8,68	16.34 14.63 13.17 13.95 12.75 7.28	70 73 71 70 77 75

^{*} Bp, 17-172 °C (0.1 mm); according to the literature [4], bp 160-165°C (0.07 mm).